Home Theories Basic Science Theory Circadian rhythm

Circadian rhythm

Biological clockA circadian rhythm is any biological process that displays an endogenous, entrainable oscillation of about 24 hours. These rhythms are driven by a circadian clock, and rhythms have been widely observed in plants, animals, fungi and cyanobacteria. The term circadian comes from the Latin circa, meaning "around" (or "approximately"), and diem or dies, meaning "day".

The formal study of biological temporal rhythms, such as daily, tidal, weekly, seasonal, and annual rhythms, is called chronobiology. Although circadian rhythms are endogenous ("built-in", self-sustained), they are adjusted (entrained) to the local environment by external cues called zeitgebers, commonly the most important of which is daylight.
Theory Explanation:
To be called circadian, a biological rhythm must meet these four general criteria:
 1.The rhythms repeat once a day (they have a 24-hour period). In order to keep track of the time of day, a clock must be at the same point at the same time each day, i.e. repeat every 24 hours.
 2.The rhythms persist in the absence of external cues (endogenous). The rhythm persists in constant conditions with a period of about 24 hours. The rationale for this criterion is to distinguish circadian rhythms from simple responses to daily external cues. A rhythm cannot be said to be endogenous unless it has been tested in conditions without external periodic input.
 3.The rhythms can be adjusted to match the local time (entrainable). The rhythm can be reset by exposure to external stimuli (such as light and heat), a process called entrainment. The rationale for this criterion is to distinguish circadian rhythms from other imaginable endogenous 24-hour rhythms that are immune to resetting by external cues, and hence do not serve the purpose of estimating the local time. Travel across time zones illustrates the ability of the human biological clock to adjust to the local time; a person will usually experience jet lag before entrainment of their circadian clock has brought it into sync with local time.
 4.The rhythms maintain circadian periodicity over a range of physiological temperatures; they exhibit temperature compensation. Some organisms live at a broad range of temperatures, and differences in thermal energy will affect the kinetics of all molecular processes in their cell(s). In order to keep track of time, the organism's circadian clock must maintain a roughly 24-hour periodicity despite the changing kinetics, a property known as temperature compensation.
Photosensitive proteins and circadian rhythms are believed to have originated in the earliest cells, with the purpose of protecting the replicating of DNA from high ultraviolet radiation during the daytime. As a result, replication was relegated to the dark. The fungus Neurospora, which exists today, retains this clock-regulated mechanism.
Circadian rhythms allow organisms to anticipate and prepare for precise and regular environmental changes; they have great value in relation to the outside world. The rhythmicity appears to be as important in regulating and coordinating internal metabolic processes, as in coordinating with the environment. This is suggested by the maintenance (heritability) of circadian rhythms in fruit flies after several hundred generations in constant laboratory conditions, as well as in creatures in constant darkness in the wild, and by the experimental elimination of behavioural but not physiological circadian rhythms in quail.
The simplest known circadian clock is that of the prokaryotic cyanobacteria. Recent research has demonstrated that the circadian clock of Synechococcus elongatus can be reconstituted in vitro with just the three proteins of their central oscillator. This clock has been shown to sustain a 22-hour rhythm over several days upon the addition of ATP. Previous explanations of the prokaryotic circadian timekeeper were dependent upon a DNA transcription/translation feedback mechanism.
A defect in the human homologue of the Drosophila "period" gene was identified as a cause of the sleep disorder FASPS (Familial advanced sleep phase syndrome), underscoring the conserved nature of the molecular circadian clock through evolution. Many more genetic components of the biological clock are now known. Their interactions result in an interlocked feedback loop of gene products resulting in periodic fluctuations that the cells of the body interpret as a specific time of the day.
It is now known that the molecular circadian clock can function within a single cell; i.e., it is cell-autonomous. At the same time, different cells may communicate with each other resulting in a synchronised output of electrical signaling. These may interface with endocrine glands of the brain to result in periodic release of hormones. The receptors for these hormones may be located far across the body and synchronise the peripheral clocks of various organs. Thus, the information of the time of the day as relayed by the eyes travels to the clock in the brain, and, through that, clocks in the rest of the body may be synchronised. This is how the timing of, for example, sleep/wake, body temperature, thirst, and appetite are coordinately controlled by the biological clock.

•    Type→ Basic Science
•    Theorist→ Jean-Jacques d'Ortous de Mairan
•    Date →1729

انتشار این مطلب در:

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn

Member login

Online visitor

We have 54 guests and no members online

Last Articles

A collection of statements by the...
A collection of statements by the...
Summary: A collection of statements by the...

Last Subjects

The next time your mom calls you by your...
In February, Argentinian tourists passed...
Countless parents have asked, "If your...

Please install plugin JVCounter!